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By means of the Monte Carlo sampling technique the equilibrium thermo- 
dynamics of fluids and magnets can be calculated numerically. We show 
that the questions of convergence and accuracy of this method can be 
understood in terms of the dynamics of the appropriate stochastic model. 
Also, we discuss to what extent various choices of transition probabilities 
lead to different dynamic properties of the system. As examples of applica- 
tions, we consider Ising and Heisenberg spin systems. The numerical results 
about the dynamic correlation functions are compared to simple approxima- 
tions taken from the theory of the kinetic Ising model. 
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1. I N T R O D U C T I O N  

The task  of  equi l ibr ium stat is t ical  mechanics ,  to  calculate  the pa r t i t i on  
funct ion  f rom a given Hami l ton ian ,  can be solved exact ly only in a very few 
cases (e.g., the  one-d imens ional  m and  two-d imens iona l  12) Ising models  and  
the one-d imens iona l  classical Heisenberg  model(30. F o r  th ree-d imens iona l  
magnets  and  for  fluids app rox ima te  me thods  have to  be used, and  thus  
numer ica l  techniques such as the M o n t e  Car lo  (MC)  m e t h o d  (4,~) have a 
b r o a d  range o f  appl icat ions .  2 By this me thod  one calculates the rmal  averages 
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2 For the large number of calculations on liquids (hard spheres, hard ellipses, Lennard- 
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for a finite system using a Markov chain of phase-space points instead of 
integrating over the whole phase space as is appropriate in statistical 
mechanics. Specifying the transition probabilities suitably, these MC averages 
converge to the exact value in the limit of infinite chain length, since the 
method is ergodic. This has been tested on very small systems where the 
exact answer is known. (14,27) 

However, only heuristic arguments have been given concerning the rate 
of convergence to this equilibrium state starting from any arbitrary initial 
configuration of the system. In practice it can be difficult to decide whether 
one is close to equilibrium or only in a rather long-living metastable state. (8) 
Since in the numerical computation the chain length is necessarily finite, one 
always has to deal with a "statistical error." It is not so straightforward to 
estimate this error very precisely, a although the standard procedures of 
elementary statistics (28) can be applied to this problem. 15,6,27) However, 
these methods disregard the knowledge that one can draw from the transition 
probabilities about the well-defined correlations between subsequent con- 
figurations. 

It is one aim of the present work to show that interpreting the Monte 
Carlo process in terms of dynamic stochastic models can contribute to 
elucidating these accuracy problems. In the simplest case of the Ising model 
one thus can give a rough estimate of the number of MC steps per spin 
which are necessary to reach a given accuracy. 

Furthermore, these dynamic stochastic models are rather interesting 
from the point of view of nonequilibrium statistical mechanics. For example, 
the stochastic Ising model has been studied extensively. (29-34) We give some 
results about time-displaced correlation functions which have been obtained 
from the MC calculation 4 for three-dimensional systems. These correlation 
functions have not been evaluated in the few previous applications of the MC 
method to relaxation phenomena, (12,t5,35) while quite recently the power of 
the MC method has been clearly demonstrated by Stoll et  al., (aG) who 
investigated the critical slowing down in the two-dimensional Ising model. 

In Section 2 we formulate the dynamic problem in terms of a master 
equation, restricting the analysis to the case of the Ising and the classical 

Jones fluids, etc.) see the recent review in Ref. 6. For the simulation of liquid droplets 
in a gas see Refs. 7 and 8; an application to liquid crystals is given in Ref. 9. References 
5 and 10L15 contain Ising model calculations, while Heisenberg magnets are treated in 
Refs. 11 and 16-22. The Blume-Capel model (~3,2~ has also been investigated. (~5) For a 
generalization to quantum statistics see Ref. 26. 
Error estimates of the early work ~4,~) seem to be too optimistic in many cases. 

4 A very brief account of these results has been given at the meeting of the Arbeitsgemein 
schaft Magnetismus at Freudenstadt, April 1972, Germany; Proceedings in Int. J. Magn. 
3:113 (1972). 
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Heisenberg models. In the latter case the relation to the actual dynamics, 
which is governed by the Hamiltonian of the system via the equations of 
motion, has to be discussed. 

In Section 3 we present some numerical results on time-dependent 
correlation functions and compare them to simple analytic theories. (31) 

In Section 4 the problem of error estimates is treated from the dynamic 
point of  view, and some results on probability distributions are given. The 
observation of "critical behavior" of the errors near phase transitions leads 
to the qaestion of the extent to which one can get different dynamic properties 
by choosing various transition probabilities, and the extent to which one 
only renormalizes the time scale. This problem is discussed in Section 5, 
while the main conclusions are given in Section 6. 

2. D Y N A M I C  D E S C R I P T I O N  OF T H E  
M O N T E  C A R L O  M E T H O D  

Consider a system of N particles where each particle (labeled by index i) 
is described by a dynamic variable ~ which can be in one of the N1 states 
of the set {c~i}. These particles interact with a given Hamiltonian ~N  ({~})- 
An example which will be treated explicitly is the Ising S = 1/2 model, where 
~ is a spin variable ~r~ which can take on two (N1 = 2) discrete values 
{e~} = { +1,  --1}; another example is the S = ov Heisenberg model, where 
the angles of spin orientation ;J~ = (~i,  ~i) can vary continuously (N1 -- Go), 
namely 0 ~< u a ~ rr, 0 ~< 9 ~< 2~r. Assuming only nearest-neighbor inter- 
actions, we have the Hamiltonians in zero magnetic field 

i # j ( n . n . )  

~ffeisenberg = __j  ~2 [(sin ~i sin va~) cos(~oi -- ~oj) + cos vat cos vaj] (1 b) 
r  

Then the expectation value of any variable A which depends on the dynamic 
variables {C6i} of the system is calculated from the canonical ensemble 

e.g., (2) 
F ( A )  = [ O ~ l  ~_ ~ exp(--fix4f Is~ng) 

�9 = {cri=:t=l} 

In approximating an integral f f ( x ) d x  by a sum with a finite number of 
terms ~ f ( x , )  Ax, ,  it is wellknown (at) that it is advantageous to choose the 
points x~ at random instead of using a regular set of points if the space of 
integration is of high dimensionality. The MC method introduced by 
Metropolis et al. (4) is based on the idea of "importance sampling, ''(s) that is, 
one chooses the phase-space points x, in Eq. (2) not completely at random 
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bu t  takes  them f rom tha t  region o f  the  phase  space where the dominan t  
cont r ibu t ions  in Eq. (2) arise. I f  it  is possible  to  choose a sequence o f  states x.  

wi th  the  p robab i l i t y  (density) 

P .  dx~ = {exp[ - - f l~ (x . ) ]}  dx.  dx.  e x p [ - - f i ~ ( x . ) l  (3) 

the  M C  est imate  .4 for  the  average ( A )  s imply reduces to an  ar i thmet ic  

average 
M 

X = ( l / M )  ~ A(x.)  (4) 
v = l  

where M is the  to ta l  number  of  states generated in the M C  sequence. In  
o rde r  to  const ruct  a sequence of  states with the canonical  p robab i l i ty  dis t r ibu-  
t ion  of  Eq. (3) one in t roduces  t rans i t ion  probabi l i t ies  W.~ which obey a 
deta i led  balance  cond i t ion  with the equi l ib r ium dis t r ibu t ion  

W . . p e . q =  W . . P ~  q (5a) 

The  s implest  t rans i t ions  between subsequent  states (configurat ions)  o f  the 
whole  system are such tha t  the state of  only  one part ic le  has been changed 
(Ising model :  one spin has been flipped). Then Eq. (5a) reads  more  precisely 

w(a~  ~ ai ')" Peq(a l  . . . . .  a~ , . . . ,  aN) = W ( ~ / - +  a 3 "  f e q ( a l  , . . . ,  a / ,  ... .  aN) 
(5b) 

or  in the cont inuous  case 

W(a~ -+ o~/) doq' . p e q ( %  ,..., oq .... , O~u) d %  "" doq "" dan  

= W ( ~ / - +  a~) da i "  Peq(a ,  ,..., o~i', .... a n ) "  dol l""  d a i ' " "  daN (5C) 

Star t ing f rom some a rb i t r a ry  ini t ial  state, the  ac tual  d is t r ibut ion  P~ o f  the 
states in the sequence in Eq. (4) will deviate  f rom the equi l ibr ium dis t r ibut ion  
peq i f  M is " smal l , "  o f  course.  But f rom Eq. (5a) it  is obvious tha t  P~ -+  P~q 
i f M  --~ oo; note  tha t  the W,~ are chosen to be nonzero  for  any  two states/*,  v; 
thus the  m e t h o d  is ergodic  by  construct ion.  {as)5'6 

5 The practical realization of this method is as follows: One has to specify the transition 
probabilities in a simple way, e.g., Eqs. (7a)-(7c), and chooses a starting configuration 
for the system. Suppose one has random numbers at one's disposal to generate a trial 
configuration from the previous configuration. The transition probability is then calculated 
and compared to a random number zR with 0 < ZR < 1. If Wt, v < zR, the trial con- 
figuration is abandoned and the previous configuration is counted once more in the 
sequence. In the other case the trial configuration is taken to be the new configuration 
of the system. This step of the procedure is repeated M times. 

6 This property of ergodicity holds for the spin systems considered above. In the general 
case the phase space can consist of several ergodic classes without transitions between 
them, e.g., in a system of hard spheres at high density near their hexagonal closest- 
packing state there may be no transitions to states near the face-centered cubic closest- 
packing state. (Ss) 
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The simple argument (4) we have reproduced here does not say anything 
about two important problems: 1. How many configurations M1 must be 
constructed so that the further states v > M1 are close to "equilibrium states" 
(i.e., have a high probability close to peq) ? Clearly the configurations v < M1 
are influenced by the arbitrary starting configuration and should not be 
included in the average, Eq. (4). 2. How large must one choose M to have 
P numerically close to peq in order to reach some given accuracy (A)  --  fi~? 
In the practical realizations (a,a) one tries to treat these problems using the 
standard methods of statistical data analysis. (28) Nevertheless these questions 
have raised some doubt on the usefulness of the method. (~9) 

Obviously it is natural (s) to associate with the scale v of subsequent 
configurations a scale of time t; suppose ~--~ single-particle transitions per 
particle are performed within the unit time (Ising model: N~ --1 triaF spin flips). 
Then the dynamic evolution of the probability Pv = P ( t )  is governed by a 
master equation: 

N 

( d / d t ) P ( a ~  . . . .  , ~ . . . .  , o ~ ,  t )  = - -  Z ~ W(o~ , - -+  a / ) P ( o ~ z  , . . . ,  ar . . . .  , o~ N , t )  
i-1 eq" r i 
N 

+ Z Z w ( ~ , ' ~  ~,)p(o~ .... , <,. . . ,  ~ ,  t) 

(6a) 

which we have written down in the discrete case. Note that in the Ising model 
the sums over the possible one-particle states ~ / c a n  be left out since only 
one ~i '  ~ ~ exists (N~ = 2). Replacing the ~i by their values cr~ for the 
Ising model, the master equation then is 

N 

( d / d t ) e ( ~  . . . . .  ~ . . . . .  ~ N ,  t )  = - -  Z W ( ( , ~ - +  - - ~ O P ( ~  , . . . ,  ~ .. . .  , ~ ,  t )  
i=1  

N 

@ 2 W(--cri--~ c r i ) P ( C r l  . . . .  , - - c r i  . . . .  , (YN,  t )  
i = 1  

(6b) 

and in the case of the classical Heisenberg model, where we have continuous 
variables, 

( d / d t ) P ( f f 2 ~  . . . . .  if2 i . . . .  , ~2N , t )  

i=1  

@ ~, f d~i  t W(~i  t---~ f f ~ i ) P ( ~ l  . . . . .  ~i ' ,  .... ~ N ,  t) ( 6 c )  
i-1 

See footnote 5. 
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This master equation given by Eqs. (6a)-(6c) has precisely one stationary 
(time-independent) solution which is the equilibrium distribution (3) because 
of the detailed balance conditions (5a)-(5c). Equation (6b) is just the starting 
equation of the familiar treatments of the kinetic Ising model, (~~ since 
in these treatments we measure our times only relative to an arbitrary time 
scale ~- (~- = 1 corresponds to one MC step/spin and unit time). To simulate 
physical systems as closely as possible, one can consider r 's which depend 
on parameters like the temperature T in an appropriate way. It is an open 
question to what extent immediate applications can be made of the stochastic 
Ising model to physical systems(3~); note that the conditions (5a)-(5c) do not 
specify W,, and the dynamics of the system uniquely. We will return below to 
the question of what actual different cases of dynamic properties are possible. 

Note that one does not get any dynamics from the equation of motion 
ih dA/dt = [A, ~ ]  using the Ising Hamiltonian. This situation is different 
from the case of the Heisenberg model (and also from the case of liquid 
systems). The dynamic properties of these systems following from the 
Heisenberg equation of motion are well defined, and it is to be asked how 
they compare to the dynamics following from the master equation [Eq. (6c)]. 
From the description of the MC process given above it is immediately clear 
that in single-particle transition models there exist no conserved quantities, 
and one cannot define any transport coefficients properly as, e.g., the spin 
diffusion constant. Although this "stochastic Heisenberg model" which is 
constituted by the application of the MC method is a nontrivial, well-defined 
dynamic model, it is somewhat artificial: its dynamics turns out to be much 
more similar to those of the stochastic Ising model than to the dynamics of 
the conventional Heisenberg model. However, the static properties of both 
models are the same; the investigation of the dynamics of the stochastic 
Heisenberg model is useful for discussing the accuracy of static properties 
derived by the Monte Carlo method. 

Considerable effort has been spent on the construction of stochastic 
models with more complicated transition processes, which better simulate 
the true dynamics (actually not in the classical Heisenberg case, but in the 
Ising(4~ case, e.g., in the lattice gas representation of fluids. (41) Using a 
two-spin flip process where at one time two spins are simply exchanged, 
the magnetization is conserved and a spin diffusion constant is well defined.(4~ 
This procedure could be applied to the Heisenberg case in a rather straight- 
forward generalization, but this possibility is less interesting from the com- 
putational point of viewS: One cannot get thermal equilibrium with respect 

8 In special cases of MC calculations such higher spin-flip processes with conserved 
quantities may be favorable; e.g., in the case of the cluster surface investigation ~7) a 
two-spin-flip process was used keeping the number of reversed spins inside the cluster 
constant. 
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to the conserved quantity in the numerical calculation; one would need 
starting configurations where this quantity has precisely its equilibrium 
value. Furthermore, one must use non-Hermitian transition matrices 
{ W(~ ~ ~()} in order to get propagating modes (34,4~) as sound waves in 
liquids (4~) or spin waves in magnets. The dynamic properties of these systems 
can be investigated numerically more conveniently using the molecular 
dynamics method. (42,43)9 

3. T I M E - D E P E N D E N T  C O R R E L A T I O N  F U N C T I O N S  
E V A L U A T E D  BY T H E  MC T E C H N I Q U E  

3.1. The Ising Model 

Since the condition (5b) together with Eq. (3) does not specify the transi- 
tion probability W(o-~ -*- --as) in a unique manner, one has the freedom to 
make a simple choice for W. The two choices we are going to use numerically 
are 

t(~') -1 exp(2~E~/k~T) if a~E~ < 0 (7a) 
WMC(O'i---->--O'i) = t(T') -1 otherwise 

and 

W~(~ -+ --o-i) = (27)-111 -+- tanh(e~E~/kBT)] 

= (2z)-1[1 + cr~ tanh(Ei/kBT)] (7b) 

where o-~E~ is the energy of the ith spin in the considered configuration. The 
factors ~-, -r' are still arbitrary and fix only the time scale. While the first 
choice [Eq. (7a)] is commonly used in the MC work, (4-22,~5,a6) the second 
choice [Eq. (7b)] is used in the theory of the kinetic Ising model. (3~ Both 
forms are limiting cases of a transition probability with one more parameter 
(taking ~-' ~ 2r) 

W((~ - -o - i )=  WI((Fi--~ - -~ 1 - - s inh2  ( ~ T  )[ tanh(Ei/kBT) --1]I  

(7c) 

where, putting ~: --+ 0, we get Eq. (7a), while putting ( = 1, we get Eq. (7b). 
These various choices for W are also explained in Fig. 1. More general possi- 
bilities of choices for W(a~ ~ o-i) will be discussed in Section 5. 

The expectation value of the magnetization at a lattice site i is defined by 

(o-i(t)) = ~ c~iP(crl .... , ~i .... , aN, t) (8) 
{~=• 

An application to the Heisenberg magnet is also contained in Refs. 16 and 17. 
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Fig. I. Transition probabilities W~(a~-*--~) [cf. 
Eqs. (7a)-(7c)1 as a function of c~iEdkBT (the local 
energy of the spin at lattice site i) plotted for various 
values of the arbitrary parameter ~:. The limiting cases 
are a "tanh"-like transition probability (the curve 
labeled by ~: = 1.0--this yields W for the kinetic 
Ising model), and an "exp"-like transition probability 
(for ~EdkBT < e; the curve labeled by ~ = 0--this 
yields W for the usual Monte Carlo method). 

where the sum is extended over all possible configurations of  the system. 
Using Eq. (7b) and the master  equat ion (6b), it is straightforward to derive (31.34) 
the kinetic equation for  ((~i(t)) 

(d/dt)@~(t)) = --2(W~(~r~ --+ --cry) (r~) (9a) 

or  more  explicitly 

r(d/dt)(ei(t)) = --{(el( t ) )  q- (tanh[E~(t)/kBT])} (9b) 

Equat ion (9b) can be solved exactly for  one-dimensional systems only. (3~ 
Since we are interested in three-dimensional systems, we have to resort  to  
approximations.  We briefly review the mean field approximat ion c31) since 
we need these results to give a compar ison with the numerical M C  results. 
Treating Eq. (9b) by this approximation,  {31) we get 

r(d/dt)@~(t)) = --[@~) q- tanh((Ei)/kBT)] (9c) 

Since we are interested in the equilibrium dynamic correlations and suscep- 
tibilities, we can solve Eq. (9c) by linear response theory introducing an 
infinitesimal field 3Hi(t) into the Hamil tonian:  

E~ = - - J  ~ crj - -  [ H +  8H~(t)]- {gFB (10) 
J (n .n . )  
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Linearizing Eq. (9c) with respect to SHi(t) = ~H~e i~ and taking Fourier 
transforms, one gets from Eqs. (9c) and (10) 

d 
-c ~[ (~M~(t)) 

(1 = --(~Mq(t)) + ~BT 

where the Fourier transform of the exchange J ( q ) =  J~Jr 
was introduced, and 

(Mq) = �89 gtzB ~ (~r~) exp(iqRk) 
k 

Thus one finds for the dynamic susceptibility from (~Mq ~) = x(q, co) . ~tIq ~ 
the result 

x(q, co) = -N(gl~B/2)z 1 -- (~)~ (12a) 
kBT 1 -- [J(q)/kBT](1 -- ((r) ~) -~ ko.c 

o r  

x(q, oJ) = N(gtzB/2)2 Xq . Xq 
kBT 1 + i~o'rq' ~'q = ~ 1 -- (~r) 2 (12b) 

where the characteristic relaxation time of the system % exhibits a critical 
slowing down for T--+ T~ = kBJ(O) and q --~ 0. Equation (12a) is a simple 
generalization of the result of Suzuki and Kubo, (31) which is valid also for 
magnetic fields H :/- 0 and for T ~< T~ as well as for T > T, .  One further 
derives the time-dependent correlations in ordinary space [R = (h, k, l), 
putting the lattice spacing to unity] 

(cr0~rR(t)) = r;~f(2,/kBr)t/~ [exp ( - - t ' - ~ f - l j  Ih(t')Ik(t')I~(t')d,' (13) 

where the I,~(x) are modified Bessel functions of the first kind. Of course, 
all these predictions of mean field theory [Eqs. (12) and (13)] are expected 
to be correct for T >~ T~ and T ~ T~ only; it is well known that this approx- 
imation breaks down near the critical point T~ .(44) The simplest idea of 
improving Eq. (12) is to correct for the true static correlation length K -1 
and the susceptibility exponent, replacing the Curie-Weiss prediction 
of Eq. (12), 

X0 = (1 -- TJT)  -1 (14a) 

by(44.45) 

X0 =- 1.06(1 -- T~/T)-5/4 (14b) 
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and neglecting ~/, we write for Xq 

X q =  r[2[K 2-- z - -  E exp(iqR)] -t (14c) 
(n.n,) 

where z is the number of nearest neighbors (over which the sum is extended). 
A similar change is applied to Eq. (13) so that it fits the approximant Eq. (14c) 
for t ~ 0. Of course, this latter approximation is invalid very close to T , ,  
since it cannot yield the correct critical behavior of the energy if we choose R 
a nearest-neighbor vector in Eq. (13). 

In making a comparison of these approximations with the MC results, 
it is useful to assess the accuracy of static properties. Static correlations of 
the SC lattice are plotted in Fig. 2 as functions of temperature and compared 
to high-temperature series expansion and extrapolation results. (45) The size 
of the lattice was N = 512 = 83 and periodic boundary conditions have been 
used. Near T~ we see some deviations from the "exact" results: (45) both 
a rounding of the transition and a shift of the maximum to higher tempera- 
tures, a~,2~ Apart from these effects (which have to be expected since 
the system is very small) the agreement with the "exact" calculation (~5) is 
satisfactory. 

o.3! 

0.2- 

o.1- 

0 
0 

ISING N=512 / / ~  

/ q  

obs 

q'exact" {E& B.) 
s e r  es extrct- polation 

kBT kBTc 

Fig. 2. Static correlat ions ( % a R )  of  the  three-dimensional  Ising 
mode l  plot ted versus  the  reciprocal t empera ture  J/kBT. The  critical 
point  of  the  infinite sys tems is also shown  (J/kBTo ~ 0.222(~4)). The  
series expans ion  o f  Fisher  and  Burford  (~5) is included (dashed curves): 
for J/kBT < 0.20 the  series have  been used  as they s tand;  the  critical 
values are also tabulated(4~); near  T0, a (1 - -  T i T )  log(I 1 - -  T i T  I) 
behavior  was assumed.  
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o2o L (~) 

b' , 'X ~sfNG N:~12 
] \ , ~  Tc :0752 

0.10 \x~x'~\ 

IR = [1.1,0) \ x '~  \ .  

0.05 ~ - - .  ..~.. ~ ~ .  

~=/2.o,o) ~ ~ ~ - - ~ - ~ . ~ , ,  z 

0 - -  I I 1 ::" 
2 4 5 

t / ~  

005- 

<b) 
~o [000,0)O(n00,g> -- ~ 0 ~  ising 

o1!? "-. 
~ . ,  N=512 3/kaT= 

l ' ~ ' b  - - -  0.238 l'tnnh'" 
_ L "%. ~ - - 0 2 ~  
~ .  ~Cl,0.01"-%. o---023B ~'ex " --%.. 

2 4 6 f 

Fig. 3. Dynamic correlations ( % , g ( t ) )  of the three-dimensional Ising model plotted 
versus the time t/T. Various R are shown. (a) J / k B T  = 0.1667, above T0, Full curve 
with error bars: MC result. The dashed curves represent the simple mean field approxima- 
tion [Eq. (13)], the dashed-dotted curves are given by the same functional form but using 
the susceptibility (14b) instead of the mean field susceptibility (14a) in the relaxation time; 
the static M F  values have been fitted to the MC results and normalized to (%C~R(0)), 
R = (1, 0, 0). (b) J/kBT~ = 0.238, 0.25, below Te �9 Full curve: MC result with transition 
probability of the " tanh"  form Eq. (7b); broken curve, with transition probability of the 
exp form Eq. (7a); time scale normalized to the same number of spin flips per unit time as 
according to Eq. (7b). 
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In Fig. 3(a) we plot some time-displaced correlation functions at the 
temperature J/kBT = 0.1667 (T/Tc-~ 1.3). Since this is not very close 
to Tc, the mean field result [Eq. (13)] for the same value of T/T~ yields rather 
similar curves. It is not clear if the use of Eq. (12b) together with Eqs. (14b) 
and (14c) actually leads to an improvement at larger values of t/-r since the 
accuracy of this MC calculation of time-dependent correlations is rather 
limited. In Fig. 3(b) similar results for correlations below T~ are shown, 
and we also include the results of a calculation where the first choice of 
transition probability (Ta) has been used. Since the mean numbers of successful 
spin flips per Monte Carlo step are different for both choices, we calculated 
these numbers of spin flips at each temperature for both choices and we 
normalized the time scale with the ratio of these numbers in Fig. 3; this ratio 
between Eqs. (7a) and (7b) changes from one-half (at T--+ ~ )  to one 
(at T--+ 0). The slight deviations between the correlation functions derived 
from these two choices can be fully attributed to the statistical error, since 
the accuracy of this calculation is not very good. 

In Fig. 4 we plot the self-correlation function @0~o(t)) for various 
times as a function of temperature. This function is peaked at a temperature 
value close to the maximum of the static correlations (Fig. 2) as expected. 
In Fig. 5(a) we plot the self-correlation function logarithmically versus time; 
the curvature indicates strong nonexponential behavior. The initial slope 
of this function is nonzero at Tc �9 This behavior is different from the correla- 
tion function of the magnetization shown in Fig. 5(b). The scatter of the data 
points demonstrates again that the error of such dynamic calculations is 
much larger than the error in calculating static properties (cf. Fig. 2) derived 

~%% (t)>--~ 

02 

4 

0.5 

Oo o.~L ~ 0'.2 ~ 0'.3 ~ "  

kBT ksTc 

Fig. 4. Self-correlation function of  the Ising 
model  plot ted versus reciprocal temperature.  Param- 
eter of  the curves is the t ime t/~-. For  large t/~- the 
max imum of  this function is at the same posit ion as 
the maximum of  the static correlation { % ~ R ) -  ~r 
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0 
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: IO.21~ 
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10.050 

o ~ ]&O00 

3 _O 

I I I I =, 
1 2 t / z .  - 3 

Fig. 5. (a) Self-correlation function <%%(t)> and (b) corre- 
lation function of magnetization <m(O)m(t)> plotted logarith- 
mically versus time. The statistical error is about as large as 
the data "points." Paramagnetic temperatures correspond to 
full curves and ferromagnetic temperatures correspond to 
broken curves. The straight lines of part (b) are the result of 
fitting Eq. (15a) to the data; the only adjustable parameter 
was taken to be T~ (since the finite system has a shifted 
critical point, which leads to J/kBTo = 0.214). 

f rom the same to ta l  number  of  configurat ions.  The s t raight  lines in Fig. 5(b) 
are  est imates fol lowing f rom Eqs. (12b) and  (14b): 

<rn(0) rn(t)>/<m 2) = exp(-- t /Xor ) -~ exp[ - - (1  - -  Tjr)5/4t/1.O6r] (15a) 

which should  be a reasonable  approx ima t ion ,  at  least  for  the small  t imes 
considered in the d iagram.  (~2,~61 The  integral  o f  this funct ion,  

f0 ~ 
z~,~ ~ <m2> -1 <m(O)rn(t)> dt ~ z.~~ - -  T i T )  -'~ (15b) 
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characterizes the slowing down of the magnetization, and A is the associated 
critical exponent. (~2) At least not too close to To, it is legitimate to take 
A ~ y = 1.25. (~6) Figure 5 gives indeed some qualitative evidence for the 
critical slowing down near T~. We emphasize that the purpose of this 
investigation is to show (1) that dynamic considerations are valuable for 
discussing the accuracy of static properties, and (2) that the MC method is, 
in principle, capable of yielding time-dependent correlation functions even 
for three-dimensional systems. Since the question of "statistical errors" for 
dynamic properties is far more subtle (a6) than it is for static properties, we 
make no statements about the critical exponents of the slowing down. This 
very interesting question is treated in the two-dimensional case only in 
Ref. 36; in this case a greater accuracy is available. 

3.2. The  He isenberg  Mode l  

It is important to remember that the dynamics considered here is n o t  

the dynamics which follows from the Hamiltonian through the equation of 
motion i h ( d / d t )  Si(t) = [Si, W]. We consider here the dynamics of a model 
based upon the master equation (6c) together with appropriate transition 
probabilities which describe the MC process. This is a well-defined dynamic 
model, but perhaps somewhat artificial from a physical point of view. 

The analog of Eqs. (7a) and (7b) is in this case 

= t(4rrz)-i exp[ (~  - -  ~'~it) �9 E i / k B  T] 

t (4~"r) -1 
if (a~ -- ~ / )  �9 Ei < 0 (16a) 
otherwise 

and 

Wn(D~ --7 D/)  = (4zr~')-l{1 q- tanh[�89 -- ~ / )  E~/kBT]}  (16b) 

and the analog of Eq. (8) is 

(47r) -N f " "  f (cos u~0P(/21 .... , g21 ,..., ~QN, t )  &Q1 "'" d.O~ "'" ds N 
(17) 

From Eqs. (6c), (16b), and (17) we again derive a kinetic equation 

. K ( S t Z + l )  

with the abbreviation 

- -  K = E ? / 2 k r T  

dx x tanh x ) l  (18a) 

(18b) 
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This reduces in the mean field approximation to 

T(d/dt)<S~(t)> = --{<S~(t)> + ~(<s (18c) 

where we have introduced the Langevin function ~ ( x )  = coth(x) --  I/x. 
Equation (18c) is completely analogous to Eq. (9c). This already reflects the 

<rnZ(0) mZ(t)> 
1.0! <(mZ)2> 

Q5- 

0.2- 

0.1 
o ~- 1; 

§ Model Tc/T 
0.75 

I o52 

o I Ising 0 .0  

I I I I : : 
1 2 3 z, 5 6 

Fig. 6. Correlation function <m~m~(t)> for 
the classical Heisenberg model  at two temper- 
atures. At  TdT = 0.75 an Ising correlation 
function is also plotted to show the similarity in 
the behavior of  the stochastic models.  

<sZ(000.0}, $z(n,00,t)> Heisen berg 

0.8- [ ~.<e(000.0)o(n00,t)~ Ising 

NoNe Carb 
~T Model 

- o~} Ho, sen~rg 
0.e - " "~..~.~. 0,75 Islng 

" /~l~,o,o) " ~ \  
0.4 r - - - " ~  "" "-.. "~-.~. 

Q2 ----~- ~ ~  2 ~  ~ 

I 
Q0 I I I I 1 = -L  

0 1 2 3 4 

Fig. 7. Dynamic  correlation functions <So~Srt~(t)> of  
the three-dimensional Heisenberg model  plotted versus the 
time t/z at two (paramagnetic) temperatures. At To/T = 0.75 
a comparison with the Ising correlations is given. 
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fact that the dynamics of both models are very similar, and this is also 
exhibited by the numerical calculation. In Fig. 6 we plot (m,(0) m,(t)}/(m, 2) 
versus t/~- and compare it to results derived for the Ising model. Since the 
temperatures used are not close to T~ there is only an insignificant difference 
of the susceptibility in the Heisenberg model C~" X0 =- 0.97(1 --  TdT) -L37 
and the Ising susceptibility (14b). Nevertheless, the differences in the time 
dependence are larger, although the general behavior is similar. In Fig. 7 
some correlation functions (So:SR:(t)} are plotted as functions of the reduced 
time for the temperatures TdT = 0.75 and 0.52. The transition probability 
(16b) was used for this plot and for Fig. 6, but one can argue--as was done 
in the case of the Ising model-- that  the dynamics differ only by some less 
interesting renormalization of the time scale. 

4. D E R I V A T I O N  O F  E R R O R  E S T I M A T E S  F R O M  A 
D Y N A M I C  T H E O R Y  

Suppose one generates M configurations of an Ising lattice with N spins 
close to thermal equilibrium at some temperature T. The magnetization at 

~-~N e (v) and one configuration v of the sequence is given by rn, ----- ( l /N)~i=1 
1 M according to Eq. (4) an estimate for (m} is given by ~ = ( / M )  ~v=z inv. 

It is necessary to ask for the accuracy of this estimate. If  the m~ were asymp- 
totically normally distributed and statistically independent of each other, the 
error estimate would be 

A m ~ {[mz --  (~)Z]/M}I/2 (19a) 

Since subsequent configurations differ only by the value of one spin variable, 
they are of course not statistically independent and what usually is done is 
to take an average over subsequent configurations per spin. The total 
number of configurations per spin is n == M/N and thus ~ = (l/n) ~2,=z m r ,  
and M in Eq. (19a) is replaced by n. In most cases subsequent configurations 
per spin are not yet really statistically independent, however. 

Using n' = en in the average 
n t 

= (l/n')  Z m., 

one tries several E < 1, applies various tests of elementary statistics (~8) to find 
the largest E (of course one must have n' >~ 1) for which subsequent mr' are 
independent, and with this n' one is able to derive a meaningful error estimate 

/1 N ~ { [ ~ 2  __ (~ )2 ] /n , }1 /2  ( 1 9 b )  

If  one had chosen M not large enough, however, this whole procedure would 
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yield ambiguous results. From the considerations of this section one cannot 
give any a priori estimate of the necessary order of magnitude of M. 

This difficulty can be overcome using the dynamic interpretation given 
above. This approach starts by considering the variance of correlated 
variables(5, 2s) 

<$~> -~ n (m. -- <m>) 

= In 2 (m. - <m>) ~ + 

-- /ZI=] ~Z2=/ZlJ-1 

which has been split into an uncorrelated and a correlated part. One further 
gets 

<$2> ~ n 1 (<m2> -- <rn>2) _72n.=i ~ (1 -- n ~--) (<morn.> -- <rn>2) (21) 

Associating now with the/xth step the time ~-, = ~-/x, one may write for n >~ 1 

<~> 

Approximating the integrand in the sense of  Eq. (15a) by the exponential 
exp(--t/%) ---- exp(--t/'rXo), one finds (T > T,) 

<6z> ~ (1/nN)X0{1 _? 2X0[1 --  (Xo/n)(1 -- e-"/xo)]} (23) 

A reasonable estimate for <m> and the error Am : [<m> -- N I will be 
found from the numerical calculation only if 

r . / ' r  o >~ 1 or n >~ Xo (24) 

[note that in this limit m(0) m(t) can be replaced by <m(0) re(t)>; cf. Eqs. (21) 
and (22)]. 

But if Eq. (24) is fulfilled we may also write 

<32> ~ (1INN)X0(1 + 2X0) (25) 

i.e., for Xo >~ 1 the error A ~ ~ <~2>1/2 increases like the susceptibility itself! 
Equations (24) and (25) exhibit very clearly the critical behavior of the 

error for large systems (and are still optimistic, since we have identified r~ 
[cf. Eq. (15b)] which follows from Eq. (22) with %,  although r,~ > % is 
possible). If  the system is very small, the critical anomaly of X0 is rounded 
off a4,2~ and the error behaves in a less critical way. Because of the various 
approximations, Eq. (25) is a very crude estimate only. Nevertheless, it gives 

82z/8/z-2 
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a feeling for the accuracy which can be obtained and the number of MC steps 
per spins n which is necessary. If  Eq. (24) is not fulfilled, any estimate 
is certainly highly unreliable; e.g., in a two-dimensional Ising magnet with 
N ~ -  104 , 1 -- Tc/T ~ 3 • 10 ~, we see that n > 104 is necessary (as also 
observed "experimentally" in this situation {tin and then the error, according 
to Eq. (25) is still several per cent, which is consistent with the actual observa- 
tion.C4s) In three-dimensional systems the situation is somewhat more favorable 
because of the smaller value of the exponent y and indeed smaller values of n 
have been sufficient to reach a good accuracy ~1~ Equation (25) has 
been used by the authors in a recent investigation of the Heisenberg magnet 
in an external field H to explain the behavior of the error as function of n, 
TJT, and H/J. 1~ A similar treatment as the one sketched in Eqs. (20)-(25) 
for the magnetization (m)  applies to other quantities also, e.g., the internal 
energy (E) .  

It is also necessary to pay some attention to the question of the extent 
to which the probability distributions p(m), p(E), etc. may be approximated as 
being Gaussians. This problem can of course be investigated easily by the 
MC method itself; e.g., in Fig. 8 we plot p(E+) for the Heisenberg model at 
various temperatures71 In the tails of this distribution there is considerable 

10 Reference 21b, Table II. Although in this case the situation is more complicated due 
to the boundary conditions used, the agreement between observed and calculated error 
estimates is satisfactory. 

zz E~ is the local energy at a lattice site [cf. Eq. (16)]. 
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Fig. 8. Probability distribution of the energy p(E+) 
versus E+/E,~,, for the classical Heisenberg model. 
Parameter of the curves is the reciprocal temperature 
J/kBT. Paramagnetic temperatures correspond to full 
and ferromagnetic temperatures to broken curves. 
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asymmetry for T < To, and this property is even more pronounced for p(mi) 
[curves for p(m~l) for T ~  Tc look similar to the curves p(Ei) for Ei, m > O, 
but are symmetric, p(m~) = p(--m~)]. 

Such functions are of interest not only concerning questions of accuracy, 
but also because p(mi) is directly accessible to experiment, by analyzing the 
line shape in ESR and N M R  techniques. (49) From Fig. 8 we conclude that 
the shape of the probability distribution is of minor importance in our case 
compared to the other approximations necessary to derive Eq. (25). We 
conclude this section by suggesting that any forthcoming MC work should 
have selected time correlations and probability distributions as an output, 
to be sure of a better understanding of all the accuracy problems, thus making 
it possible to avoid mistakes and counter criticisms such as contained in 
Refs. 39 and 46.1~ 

5. R E L A T I O N S  B E T W E E N  T H E  T R A N S I T I O N  P R O B A B I L I T I E S  
A N D  T H E  D Y N A H I C  PROPERTIES O F  T H E  
H O D E L  SYSTEM 

The critical behavior of the error discussed in the previous section 
is a serious limitation for numerical applications, of course. It has been 
suggested (5) that suitable other choices of the transition probability could 
remove, or at least reduce, this unconvenient behavior. We study this problem 
now from the dynamic point of view. Generalizing Eq. (7c), we write 

(26} 

where g({~j}) may depend on any spins except the spin at the lattice site i 
itself. Then the detailed balance condition (5b) is still fulfilled. I f  we make 
the mean field approximation, the master equation reads 

~'(d/dt)@i(t)} = --g({@~}}[(ei} + tanh((E~}/kBT)] (27} 

Far from thermal equilibrium the dynamics following from Eq. (27) is 
completely different from the dynamics contained in Eq. (9c). But if one is 
only interested in the equilibrium response functions, a treatment similar to 
Eqs. (10) and (11) leads to a result closely corresponding to Eq. (12b): 

X(q, co) = N(gl~B/2)2 Xq (28) 
kBT 1 @ iw%' 

with %' ~ %/g(@}), i.e., the only change that has been achieved in the 

z2 Reference 46, footnote 20. 
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dynamic susceptibility is a renormalization of the time scale ! It is interesting 
to investigate to what extent this result holds more generally. We consider 
a special situation only, where g({ej}) = g'(E//kBT) is an arbitrary function 
of the nearest environment of e/only,  z8 and, more severely, restrict ourselves 
to the one-dimensional chain. Although the possibility of an exact solution (3z~ 
of the general master equation is restricted ~34~ to the trivial choice g'(EdkBT)= 
const in Eq. (26), we can still derive a result similar to Eq. (28). We may 
require that the whole behavior of the system remains unchanged if we change 
the sign of the magnetic field ~Hi(t) and those of all spins of the system. 
Thus we have g'(Ei/kBT) = g'(--Edk~T)? 4 Expanding g'(EdkBT ) in powers 
of E /and  making use of 0.j2 = 1 and its consequence 

(0"/+ I ~- if/_1) 2r = 2~r-1(1 @ 0./_IG/+I) (29) 

together with 3H/'(t) = g/z B SH/(t)/2k~T, we obtain the most general form of 
g'(EdkBT) [Eq. (10) with H = 0, and Eq. (29)]: 

g'(EdkBr) = go(J/kB T) ~- gl(J/kB T) SH/'(t)(e/+l + 0./-1) 

-t- g2(J/kBT)(0./+le~-l) (30) 

In the same way one finds for tanh(EdkBT) ~8~ 

--E/ 1 [tanh { ~ ] 2 J  

1 [tanh2 ( ] ] 2 J  e/+lCq_l) I (31) q- 3H~'(t) (1 

For a linear response theory it is necessary to keep terms linear in 
3H/'(t) in Eqs. (30) and (31) only. Introducing the abbreviations 

y = tanh(2J/kBT) and v = tanh(J/kBT) 

and using the property ~,~~ 

<eiei+j>eq = / r  (32) 

the master equation reduces to [y = 2v/(1 -1- v2)] 

-r(d/dt)<e/(t)> ----- --go<e/> --g2<ei_le/ei+l> -~- (go -~-gz)()'/a)(<e/+~> q- <e/_z>) 

§ 3H/'(t)[ go(1 -- 9'v) -t- g~(v 2 -- yv)] (33) 

zs This still covers the possibilities (7a)-(7c) and is of practical interest in comparing usual 
MC work with the kinetic Ising model theories, ta~ 

z4 See footnote 13. 
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where we were allowed to replace the coefficients of ~Hi'(t) by their equili- 
brium values since we are only interested in the linear response. To remove 
the three-spin correlation function from Eq. (33), we make use of the expan- 
sions 

+ m  

(cri_zcricr~+~} = ~ 3Hk'(t)(crkcr~_l(ricr~+x)e q (34a) 
7r 

and 
~o9 -}-ao 

(c@ = ~ SH~'(t)(crkc@e q = ~ ~Hi+i(t) v r~f (34b) 
lc=--c~ t = - - ~  

together with the factorization property (5~ 

(ffilGi2ffi3(Fi4) = ( f f i l t Y i 2 ) e q ( ~ i 3 c r i 4 ) e q ,  il <~ i2 ~ is <~ i~ (35) 

to derive the formula 

(cr,_la,ae+l} = <a~} -- 3H((t)(1 -- v 2) (36) 

According to Eqs. (33) and (36), the master equation is simply 

(cri(t)) = --  L g0 ( ~ )  -c -g 

• l ( ~ i ) - - - ~ ( ( ~ i _ l ) §  (37) 

Thus also in this case the only change of the dynamics is that the time scale 
is renormalized by a factor (g0 + g2) -~ with arbitrary temperature depen- 
dence. This fact constitutes an exact proof that the equilibrium response 
function x(q, co) found by Glauber (.1~ is the same for arbitrary choices of 
g'(E~:/kBT) apart from the frequency scale. We have made extensive use of 
the knowledge one has about the static equilibrium multi-spin-correlations 
of the Ising chain to derive the main result of this section, Eq. (37). Its 
extension to higher dimensionality therefore does not seem very straight- 
forward; the numerical results presented in Section 3 and the mean field 
approximation [Eq. (28)] would be consistent with such an extension. It 
is to be noted that a renormalization of the time scale in comparison with 
the scale of Monte Carlo steps per spin could indeed be helpful for the 
numerical work. 

6. C O N C L U S I O N S  

In this paper we have described the Monte Carlo process for computing 
averages for Ising and classical Heisenberg systems in terms of the appropriate 
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master equations, and the appropriate dynamic correlations and susceptibili- 
ties. An extension of this description [Eq. (6a)] to other model systems is 
straightforward. The MC calculation readily yields information about the 
dynamic properties of the system. A comparison of the dynamic correlations 
with mean field predictions showed that this approximation seems to yield 
rather reasonable results, contrary to the situation in usual "nonstochastic" 
Heisenberg magnets. We stress the fact that the dynamics of these stochastic 
models are not characteristic of the Hamiltonian governing the equilibrium 
properties, but are mainly determined by the properties of the simple 
stochastic process producing new configurations: A single spin-change 
stochastic Heisenberg model has no quantities conserved and its dynamic 
properties are very similar to the single spin-flip Ising model, while a higher 
spin-flip Ising model with energy and magnetization conservation can have 
dynamic properties more similar to the usual Heisenberg magnet. 

We further have given a dynamic interpretation of the "statistical errors" 
in the MC method, and have related them to a simple model of critical 
relaxation. We have shown how one can estimate in this case the number of 
configurations necessary to reach a given accuracy. The influence of the 
various kinds of transition probabilities on the dynamic behavior have also 
been discussed. While these probabilities lead to entirely different dynamic 
properties far from the thermal equilibrium, they lead only to a renormaliza- 
tion of the time (or frequency) scale near the thermal equilibrium--at least 
if one is not too close to a critical point of the system. For a fairly general 
class of transition probabilities it is proven that this scaling property holds 
exactly for the one-dimensional kinetic Ising model. 
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